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Flux quench in a system of interacting spinless fermions in one dimension
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We study a quantum quench in a one-dimensional spinless fermion model (equivalent to the XXZ spin chain),
where a magnetic flux is suddenly switched off. This quench is equivalent to imposing a pulse of electric field
and therefore generates an initial particle current. This current is not a conserved quantity in the presence of
a lattice and interactions, and we investigate numerically its time evolution after the quench, using the infinite
time-evolving block decimation method. For repulsive interactions or large initial flux, we find oscillations that are
governed by excitations deep inside the Fermi sea. At long times we observe that the current remains nonvanishing
in the gapless cases, whereas it decays to zero in the gapped cases. Although the linear response theory (valid
for a weak flux) predicts the same long-time limit of the current for repulsive and attractive interactions (relation
with the zero-temperature Drude weight), larger nonlinearities are observed in the case of repulsive interactions
compared with that of the attractive case.
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I. INTRODUCTION

The nonequilibrium dynamics of isolated quantum systems
has become a major subject of study in condensed matter
physics [1]. Thanks to substantial developments on the
experimental side, it is now possible to compare theoretical
predictions and experiments with a high accuracy and con-
trollability, in particular in the field of cold atoms. Quantum
quench, a sudden change of some parameter(s) in a quantum
system, is one of the simplest protocols to drive systems out of
equilibrium. Typically, an initial state is prepared as the ground
state of some pre-quench Hamiltonian, and some external
parameter is then abruptly changed at t = 0. This leads, for
t > 0, to a unitary evolution with a different Hamiltonian and
to some nontrivial dynamics.

Quantum quenches in one-dimensional (1D) systems have
already been intensively studied for several reasons. First, the
effect of interactions and quantum fluctuations are particularly
important in 1D. Second, several powerful analytical and
numerical methods, such as Bethe ansatz, bosonization, time-
evolving block decimation (TEBD), and time-dependent den-
sity matrix renormalization group (t-DMRG), are available for
these systems; these methods allow us to make predictions con-
cerning the dynamics of these quantum many-body systems. In
the present study we consider a simple quench for interacting
spinless fermions in 1D, where an Aharonov-Bohm flux is
suddenly switched off. This is equivalent to an application of an
instantaneous pulse of electric field, which generates an initial
particle current. This quench has several appealing properties.
First, the nontrivial dynamics comes specifically from lattice
and interactions effects. Indeed, the current is an exactly
conserved quantity for free fermions on a lattice, as well as
for any model with translation symmetry in the continuum
(due to Galilean invariance).1 So, it is the combination of
interactions and lattice effects that is responsible for the
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1In these two cases the sudden change of flux creates an excited

eigenstate (a boosted Fermi sea for free fermions) and no dynamics
is generated (see also Appendix A). In the presence of a lattice and

nontrivial dynamics. Second, changing the flux by an integer
number of flux quanta on a periodic chain amounts to a unitary
transformation of the Hamiltonian and therefore leaves the
energy spectrum unchanged. In other words, for an integer
number of flux quanta, the energy spectrum is the same for
the pre-quench and post-quench Hamiltonians. In that case
the dynamics solely comes from a change in the eigenstates,
not from their energies. Third, this quench allows us to make
contact with some transport properties of the system. When
the number of flux quanta per the length of the system is small,
the electric field pulse is weak. In this limit, the dynamics may
be described by using the linear response theory; long-time
limit of the current should then be directly proportional to the
zero-temperature Drude weight of the model [2,3].

In this study we use the infinite time-evolving block
decimation (iTEBD) [4] method to monitor the evolution of the
wave function. We focus on the particle current and analyze
its dynamics, including its long-time limit. As an important
result, we observe some current oscillations at intermediate
times. In addition, these current oscillations are found to
be carried by excitations located deep inside the Fermi sea.
Finally, we find that the long-time limit of the current depends
in a nonlinear way on the initial flux. These nonlinearities
appear to be particularly strong in the case of repulsive
interactions between the particles. A theoretical understanding
of these observations—presently lacking—would require us
to go beyond an effective low-energy description, such as
bosonization. Several other quantities, like the growth of the
entanglement entropy, are also computed.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the model and the flux quench problem.
In Sec. III, we review the numerical method (iTEBD) and
present our numerical results for the dynamics after the quench.
In Sec. IV, we summarize our results and state conclusions.
Technical details on numerical calculations are presented in
the Appendix.

interactions, Umklapp processes can change the particle current while
conserving the total lattice momentum.
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II. FLUX QUENCH

We consider one of the simplest interacting spinless fermion
systems in one dimension (assuming a periodic boundary
condition):

H (t) = −1

2

N−1∑
i=0

(e−iθ(t)c
†
i ci+1 + H.c.) − �

N−1∑
i=0

ñi ñi+1, (1)

where ñi = c
†
i ci − 1/2, and N is a total number of sites. As is

well known, a Jordan-Wigner transformation maps this model
to a spin-1/2 XXZ chain [5]. We focus here on the zero
chemical potential case, which corresponds to zero external
magnetic field in the spin language. The phase factor θ (t)
in the hopping terms is the vector potential, representing an
Aharonov-Bohm flux �(t) = Nθ (t) piercing the ring. In the
spin language, it introduces a twist in the xy plane. In the
following, we call θ (t) flux strength.

In what follows we take the thermodynamic limit N → ∞
while keeping the flux strength θ (t) constant. The model is
integrable for any value of �, and the phase diagram has
been thoroughly studied [5]. For � > 1 (� = 1), the system is
gapped (gapless), and there are two degenerate ground states
which are exactly given by the completely empty state and
the completely filled state. They correspond to ferromagnetic
states in the spin language. In these cases, the ground states are
completely insensitive to the flux and there will be no dynamics
as well. For −1 � � < 1, the system is gapless and its
low-energy universal behaviors are described by bosonization
as Tomonaga-Luttinger liquid. For � < −1, the system is
again gapped, and there are two degenerate ground states
corresponding to an antiferromagnetic long-range order in the
spin language. In contrast to the ferromagnetic case, however,
the ground states are still nontrivial and sensitive to the flux.
Therefore, in this paper, we consider the regime � < 1, where
there are nontrivial effects of the flux.

Flux quench. The problem we study here is a quantum
quench where the flux θ is varied from θ (t < 0) = θ0 to θ (t �
0) = 0. This sudden change of magnetic flux is equivalent
to imposing an instantaneous pulse of electric field E(t) =
−∂tθ (t) = θ0δ(t) to the fermions, and it induces some particle
current at the initial time. In the present setup, the current is
always uniform throughout the system, and thus we can define
the current operator by the average of local currents as2

Ĵ = 1

2iN

∑
i

(c†i ci+1 − c
†
i+1ci) = 1

N

∑
q

sin(q)c̃†q c̃q , (2)

where c̃q := 1√
N

∑N−1
r=0 cre

−iqr is the annihilation operator in
momentum space. The current is not a constant of motion in
the presence of interaction � �= 0. The latter, combined with
the presence of lattice, causes Umklapp scattering as

[H0,Ĵ ] = − �

2iN

∑
i

(c†i ci+1 + c
†
i+1ci)(ni−1 − ni+2), (3)

2In the presence of a nonzero vector potential θ (t),
the expression of the particle current is modified to Ĵ =

1
2iN

∑
i (e−iθ(t)c

†
i ci+1 − eiθ(t)c

†
i+1ci) in order to be gauge invariant.

where H0 is the Hamiltonian without flux, H0 = H (t � 0).
As mentioned in the introduction, the interactions are essential
to produce a nontrivial dynamics. In this study we focus on
the expectation value of the current, J (t) := 〈ψ(t)|Ĵ |ψ(t)〉. In
particular we analyze (i) the time evolution towards stationary
states and (ii) the long-time limit of the current. We note that
Mierzejeski et al. [3] recently utilized this flux quench to
illustrate the breakdown of the generalized Gibbs ensemble
[6]. Also, the Loschmidt echo associated to this quench was
considered using the Bethe ansatz in Ref. [7], and the flux
quench for bosons was studied in Refs. [8] and [9].

When θ0 is small, we expect that the linear response (LR)
theory can be applied to obtain J (t) as a response to the weak
electric pulse as

J (t) = 1

2π

∫ ∞

−∞
dωF (ω)σ (ω)e−iωt + O

(
θ2

0

)
, (4)

where F (ω) = θ0 is the Fourier transform of the imposed
electric field E(t) = θ0δ(t), and σ (ω) is the conductivity

σ (ω) = N

ω

∫ ∞

0
dt eiωt 〈[Ĵ (t),Ĵ ]〉GS,0. (5)

Here 〈. . .〉GS,0 denotes the expectation in the ground state of
H0. The conductivity has a zero-frequency component, called
the Drude weight, as well as a regular part:

σ (ω) = 2πDδ(ω) + σreg(ω). (6)

In the case of flux quench, Eq. (4) gives

J (t) = θ0

2π

∫ ∞

−∞
dωσ (ω)e−iωt + O

(
θ2

0

)
(7)

and, as noted in Ref. [3], the long-time limit of the current is
proportional to the Drude weight D

J (t = ∞) = Dθ0, (8)

while the finite-time dynamics is governed by the regular part
of the conductivity σreg(ω). We will compare our numerical
data on the flux quench with these LR predictions later.

Before analyzing this problem in detail, we mention some
possible experimental realizations. The flux quench can be
viewed as a sudden momentum shift for the particles. It is
therefore equivalent to a situation where a moving lattice
stops abruptly at t = 0 (the lattice velocity provides the initial
momentum shift). This situation was experimentally realized
[10] with bosons trapped in an optical lattice. We may therefore
expect that a similar setup could be realized with fermions
(1). Besides, a quantum quench using an artificial gauge field
in optical lattices was also proposed [11]. This is a direct
realization of the flux quench studied here, although bosons
were considered.

III. NUMERICAL RESULTS

In this section we present numerical results for the dynamics
of the current. We employ the iTEBD method [4], which
enables to study the system in thermodynamic limit N → ∞.
The iTEBD is a numerical scheme based on the matrix-product
state (MPS) representation of quantum many-body states in
1D. The MPS can naturally describe a translationally invariant
state of an infinitely long 1D system. In the present problem,
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FIG. 1. Dynamics of the current after the quench for θ0 = π/2 (upper left), θ0 = π/6 (upper right), and θ0 = π/10 (bottom left and right).

the initial state is translation invariant, and this symmetry
is preserved also at t > 0 by the post-quench Hamiltonian
H0. Thus, strictly speaking, there is no finite-size effect in
our calculation. On the other hand, an exact description of a
given quantum state by an MPS generally requires a matrix
of infinite dimensions, but we need to approximate it by
a finite-dimensional matrix in a practical calculation. The
dimension of the matrix is called bond dimension, and the
use of a finite bond dimension is a possible source of the error
in the calculation. For a ground state of a gapped 1d system, an
MPS with a (sufficiently large) finite bond dimension is known
to provide an almost exact description of the wave function
[12]. However, for the ground state of a gapless system with
an infinite correlation length, the finite bond dimension of an
MPS approximation is known to introduce an effective finite
correlation length [13]. Nevertheless, the MPS description
(and thus iTEBD algorithm) with a finite bond dimension
can provide an accurate result on quantum dynamics up to
a certain time [14], in particular concerning local observables.
Therefore we apply the iTEBD algorithm to the flux quench
problem, to obtain the evolution of the current for a certain
period of time after the quench.

In practice, first, the ground state of the model (1) with flux
θ0 is obtained by simulating an imaginary time evolution with
the iTEBD algorithm. We then compute the real time evolution
using the Hamiltonian without flux, still with iTEBD. We
carefully check the numerical errors by varying the time steps
during the time evolution, as well as the bond dimension χ . The
results shown in the present paper were obtained by using bond
dimensions between χ = 500 and χ = 1200. We calculate the
dynamics for various initial flux strengths θ0 ranging from
π/30 to π/2, and for interaction � from −2.0 to 0.8. More
details on the numerical calculations are given in Appendix B.

The evolution of the expectation value of the current, J (t),
is shown in Fig. 1. We summarize the observed dynamics as
follows. For large initial flux θ0 (θ0 � π/3), the current shows
some decay and oscillations for all values of interaction �

(note however that the oscillation period for � = ±0.1 is too
long to be measured accurately). For smaller initial fluxes, θ0 =
π/6 to π/30, we observe a qualitatively different dynamics,
depending on the sign of �. For attractive interactions (� > 0),
the oscillations (if any) are too slow to be visible within
the simulation time, and the relative decay of the current
is small. In that regime J (t) quickly reaches a stationary
value (with the possibility of some short time-scale and small
amplitude oscillations, as visible in the inset of the right panel
of Fig. 4). For repulsive interactions (� < 0), some oscillations
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FIG. 2. Fitting of numerical data for initial flux θ0 = π/6.
Roughly up to first oscillation, the empirical fitting works well. The
black arrow indicates the LR prediction of the long-time limit of the
current for � = ±0.5 [Eq. (8)].

174310-3



NAKAGAWA, MISGUICH, AND OSHIKAWA PHYSICAL REVIEW B 93, 174310 (2016)

 0

 0.5

 1

 1.5

 2

 2.5

-2 -1.5 -1 -0.5  0  0.5  1

ω

Δ

θ0 = π/2
θ0 = π/3
θ0 = π/6

FIG. 3. Frequency ω from numerical fitting. Error bar is estimated
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are visible, although for small initial flux θ0 and small |�| their
period can exceed the simulation time. Besides, the decay of
the current is larger and the associated relaxation time scale is
longer than in the attractive case.

In order to quantify the various scales associated to the
current dynamics, we use two simple fitting functions,

f (t) = c + (A + B cos(ωt + φ))e−t/τ

(9)
g(t) = c + Ae−t/τ ,

where c,A,B,ω,φ,τ are fitting parameters. We use f (t) when
some oscillations are visible within the simulation time scale
(t < 100), and g(t) otherwise. Some examples of fits are shown
in Fig. 2. Among the fitting parameters, we focus on c, ω, and
τ , which correspond respectively to the long-time limit of the
current, the frequency of the oscillations, and the relaxation
time.

A. Oscillations

As shown in Fig. 3, the oscillation frequency ω extracted
from the fits is approximately linear in |�|. Note however, the
associated slope appears to depend on the value of the initial
flux. The relation ω ∝ |�| seems to hold in gapless phase
(|�| � 1). But it may also be valid beyond that regime, since
ω also appears to be approximately linear |�| in the regime

−1.5 � � � 1, although this relation clearly breaks down for
� � −1.5.

We comment on the relation between our numerical results
and the LR theory. As described in the previous section, the
LR theory (θ0 	 1) relates the real-time dynamics of the
current to the Fourier transform of the regular part of the
conductivity σreg(ω). Even though the applicability of the LR
theory is not obvious when θ0 is of the order of unity (as
for θ0 = π/6,π/3 and π/2), the frequency ω of the observed
oscillations may originate from a peak in σreg(ω). To our
knowledge such a structure in σreg(ω) has not been explicitly
discussed in the literature for the XXZ model, but similar
results have been reported in studies on the finite-temperature
Drude weight of this model [15]. Also, it is worthwhile to point
out that the current-current correlation function 〈Ĵ (t)Ĵ 〉 shows
a similar oscillatory behavior [16] [basically the integral of this
correlation function gives the time dependence of J (t)].

Dynamics of the momentum distribution

To investigate the nature of the current oscillations, we
calculate the momentum distribution of the particles, nq =
〈c̃†q c̃q〉. Since we have 〈J (t)〉 = 1

N

∑
q sin(q)nq(t), a popula-

tion imbalance between q > 0 and q < 0 results in nonzero
current. Figure 4 shows the dynamics of the momentum
distribution for two cases [17]: θ0 = π/3,� = −0.5 and
θ0 = π/6,� = 0.5. At t = 0 the momentum distribution is
that of the ground state in the presence of a magnetic flux.
It corresponds to the ground state in zero flux, but shifted
by momentum θ0 (see Appendix A). Thus, at t = 0, nq is
a quasi(broadened) Fermi distribution with the shifted Fermi
wave vectors ±k′

F = ±π/2 + θ0. After the flux is quenched
to zero, the distribution starts evolving.

An important observation is the simultaneous appearance
of a “dip” and a “peak” in nq (left of Figs. 4 and 5). Both
structures appear to oscillate in phase with J (t), as shown in
the inset of Fig. 4. We also note that, in situations where current
oscillations are absent (right panel of Fig. 4), no dip/peak is
observed. The dip and the peak correspond to two momenta
pdip and ppeak that are separated by π : ppeak = pdip − π . The
momentum pdip is plotted as a function of θ0 for several values
of � in the right of Fig. 5.
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For small θ0, pdip approaches the shifted Fermi point k′
F

(→ π/2) and the current-carrying modes become low-energy
modes. This is expected since the initial state and the ground
state are energetically close to each other in this case. However
for finite θ0 we observe that the modes responsible for the
current oscillations are located at a significant distance from
the Fermi points and are not low-energy excitations.

The detailed dependence of pdip on the parameters θ0 and
� is not yet understood, but we can consider a simplified
picture where only two characteristic modes govern the
current dynamics. Located at pdip and ppeak = pdip − π , these
modes are related through some Umklapp processes induced
by the interactions.

As mentioned above, since pdip generically departs from
k′
F , the oscillations might not be described by the Tomonaga-

Luttinger liquid (TLL) framework, where the physics is
entirely described in terms of low-energy excitations in the
vicinity of the Fermi points [5]. As a comparison, a different
global quench for the XXZ model (equivalent to the present
Hamiltonian) was considered in Refs. [14] and [18]. There,
the strength of the interaction is suddenly changed and several
aspects of the dynamics appeared to be well described by the
TLL model.

Finally, we point out that this anomalous dip (peak)
structure might be observed in real experiments, since the
momentum distribution is often accessible in cold atom exper-
iments. To summarize this subsection, we found numerically
that the oscillation frequency is proportional to the strength

of interaction |�| and that these oscillations are governed by
excitations located in momentum space far from the shifted
Fermi point.

B. The long-time limit

Here we discuss the long-time limit of the current. From the
LR theory in θ0, the long-time limit of the current J (t = ∞)
is given by J (t = ∞) = Dθ0, where D is the Drude weight
of the system. The latter is exactly known for the XXZ
model (equivalent to our present model) at zero temperature
[19]:

D = π

4

sin μ

μ(π − μ)
, μ = arccos(−�). (10)

D is nonzero only in the gapless phase (−1 � � < 1) and
vanishes in the gapped phase. Hence the LR theory predicts
that J (t = ∞) is nonzero only in the gapless phase. In addition,
D is symmetric under � ↔ −� (except for � = ±1). So the
long-time limit of the current does not depend on the sign of
� in the LR theory.

We can also estimate the long-time limit of the current,
J (t = ∞), by fitting and extrapolating the numerical data
obtained for the finite time after the quench by the iTEBD
method. In the following, we shall compare J (t = ∞) esti-
mated from the iTEBD calculation and that predicted by the
LR theory. Note however that in the case of � < 0 and small
initial flux, it is difficult to evaluate the long-time limit from
numerical data.
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As shown in Fig. 1, the numerical results indicate that J (t =
∞) is nonzero in the gapless phase and zero in the gapped
phase, which is consistent with the LR result. On the other
hand, it is clear from Fig. 6 that J (t = ∞) rapidly deviates
from the LR prediction when θ0 increases. This reflects the
nonlinearity of current as a function of the initial flux strength.
For attractive interactions (� > 0), the normalized deviation
from the LR theory (right of Fig. 6) shows power-law decay at
small θ0, and these appear to be compatible with J (t = ∞) =
Dθ0 + O(θ3

0 ). In contrast, for large repulsive interactions (� <

0), J (t = ∞) strongly deviates from the LR theory even for
θ0 as small as π/30 ≈ 0.1. We note that, despite the general
difficulty in doing such fits and extrapolations, the deviation
from the LR theory cannot be attributed to some error in the
extrapolation. This is clear by comparing the raw finite-time
data and the LR theory prediction, as shown in Fig. 2; any
sensible extrapolation would give different J (t = ∞) from
the LR theory. We also note that this strong nonlinearity in the
presence of repulsive interactions has already been noted in
Ref. [11].

It is an interesting fact that the magnitude of the above
nonlinearities strongly depends on the sign of �. We may
attribute this to superfluid correlations in the system. Strictly
speaking, superfluidity is absent in one dimension, but a
superfluidlike response can be observed in some dynamical
properties of the system [20], and these are expected to be
stronger for attractive interactions (� > 0) than for repulsive

ones (� < 0). In the case of repulsive interactions, the larger
normal component dissipates and this would result in smaller
values of J (t = ∞), as observed in Fig. 6.

Comparing the momentum distributions in the gapless
phase and in the gapped phase

The dynamics of the momentum distribution shows a
qualitative difference between the gapless and the gapped
phases, irrespective of initial flux θ0. In the gapless phase,
the shifted Fermi sea structure of the initial state appears to be
qualitatively robust and survives up to the stationary regime
(Fig. 4). The imbalance between the number of left (q > 0)
and right (q < 0) moving particles in the stationary regime
is the source of the persistent current J (t = ∞) �= 0. On the
other hand, in the gapped phase, the shifted Fermi sea structure
of the initial state disappears over a relatively short time scale
(Fig. 7). In that case, the whole momentum distribution moves
towards the center (q = 0) and the symmetry between q > 0
and q < 0 is restored, leading to J (t = ∞) = 0.

This difference between the gapless and gapped phases
might be related to the presence of additional conserved quan-
tities that exist in the gapless phase [21–24]. Those additional
constants of motion, called quasilocal, are responsible for
the ballistic transport and the nonzero Drude weight at finite
temperature in the gapless phase [21]. In a similar manner,
we expect these additional conserved quantities to prevent
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the restoration of the left-right symmetry in the momentum
distribution.

C. Relaxation time

The relaxation time τ , extracted from the fits, is plotted in
Fig. 8. In general, larger |�| and larger θ0 result in smaller
τ (faster decay). This is natural because the time derivative
of the current dJ (t)/dt is proportional to � [Eq. (3)]. When
� = 0 (free fermion point), the current is conserved and τ

must be ∞. In agreement with this fact, τ appears to diverge
when |�| → 0.

IV. CONCLUSION

We have studied numerically a flux quench in an interacting
spinless fermion model in one dimension. This quench gener-
ates some particle current at the initial time, and we monitored
and analyzed quantitatively the current dynamics that follows.
The numerical data reveal some current oscillations as well
as some decay to a stationary value. For repulsive interactions
and a large initial flux, the frequency of those oscillations is
proportional to the strength of the interaction in the system.
Remarkably, the dynamics of the momentum distribution
reveals that these oscillations are governed by the excitations
located deep inside the (shifted) Fermi sea. In addition to those
novel oscillations, the long-time limit of the current exhibits
nonlinearities which are particularly strong in presence of
repulsive interactions.

As future work, it seems important to understand the origin
of the specific “dip” momentum pdip that governs the current
oscillations. Another interesting direction of research would
be to compute the long-time limit of the current (beyond the
weak-flux regime where the linear response theory applies)
using integrability techniques [7,23,24].
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APPENDIX A: INITIAL STATE AND TWIST OPERATOR

As mentioned in the introduction, in a ring of length N , the
zero-flux Hamiltonian H0 and the Hamiltonian with p ∈ Z
flux quanta are related by a unitary transformation:

Hθ0=2πp/N = UpH0U
−1
p , (A1)

where Up (so-called twist operator) is defined as [25]

Up = exp

(
2ipπ

N

N−1∑
x=0

xc†xcx

)
. (A2)

So, the ground state |ψp〉 in the presence of p flux quanta
can be expressed in terms of the zero-flux ground state |ψ0〉:

|ψp〉 = Up|ψ0〉. (A3)

In other words, when p is an integer, the flux quench amounts
to study the dynamics generated by H0 when starting from the
initial state Up|ψ0〉.

Up has a simple action on the fermion creation operators:

Upc†xU
−1
p = exp

(
2ipxπ

N

)
c†x, (A4)

which implies that it performs a momentum shift (or boost):

Upc̃†qU
−1
p = c̃

†
q+2πp/N . (A5)

In the case of a noninteracting fermion problem [� = 0 in
Eq. (1)], Up maps the Fermi sea |ψ0〉 to a “shifted Fermi”
sea Up|ψ0〉, with Fermi points located at −π/2 + 2πp/N and
+π/2 + 2πp/N . The latter is an exact excited eigenstate of
the Hamiltonian H0. Therefore, in the noninteracting case, the
flux quench does not generate any dynamics.
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APPENDIX B: NUMERICAL CALCULATIONS

This Appendix provides some details on the numerical
method. We first prepare the ground state of the Hamiltonian
with flux θ0

Hθ0 = −1

2

∑
i

(e−iθ0c
†
i ci+1 + H.c.) − �

∑
i

ñi ñi+1, (B1)

using an imaginary time evolution (with iTEBD). A second-
order Suzuki-Trotter decomposition is used, and we take the
bond dimension χ between 500 and 1200. The imaginary time
step δτ is reduced gradually from δτ = 0.1 to δτ = 0.001. δτ

is reduced each time the imaginary time propagation with
a coarser δτ has converged. At each δτ , the convergence
is checked by looking at the energy and the entanglement
entropy of a half chain between two successive time steps.
Our convergence criterion is 10−8 for the energy and 10−6 for
the entanglement entropy. After the imaginary time evolution
at δτ = 0.001 converges, we compare the obtained energy
with the exact one [26]. Our iTEBD energy matches the exact
value with 5 or 6 digits. Note that the entanglement entropy of
a half-infinite system should diverge in the gapless phase, and
that it is approximated here by a finite value (since χ is finite).
See Refs. [13] and [14] for related discussions.

Next, using iTEBD again, we calculate the real time
evolution using the Hamiltonian without flux:

H0 = −1

2

∑
i

(c†i ci+1 + H.c.) − �
∑

i

ñi ñi+1. (B2)

We again use a second-order Suzuki-Trotter decomposition
and take a real-time step dt = 0.01 or 0.02. One of the largest
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FIG. 10. Expectation value of the current, computed with several
values of the bond dimension χ . In this case we retain the data for
χ = 1000, and only up to t = 20 (indicated by arrow).

obstacles to calculate the real time evolution of a quantum
system by iTEBD is the growth of the entanglement entropy.
This growth is usually linear in time for global quenches, and,
as shown in Fig. 9, it appears to be the case for the present flux
quench. In practice this has limited the accessible time scale
to t � 100.

In order to check the accuracy of the simulated time-
evolution, we have monitored the accumulated truncation
errors, the conservation of energy, and the conservation of the
number of particles. In addition to monitoring these values, we
confirmed the accuracy of our results for a few � and θ0 by
comparing the results for several values of the time step dt and
the bond dimension χ . As an example, Fig. 10 shows how the
expectation value of the current is modified when increasing
the bond dimension.
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